更多>>精华博文推荐
更多>>人气最旺专家

江凡

领域:北国网

介绍:“偷书不算偷”。...

亢茜茜

领域:鲁中网

介绍:总结是应用写作的一种,是对已经做过的工作进行理性的思考。利来国际w66网页版,利来国际w66网页版,利来国际w66网页版,利来国际w66网页版,利来国际w66网页版,利来国际w66网页版

利来,利来娱乐
本站新公告利来国际w66网页版,利来国际w66网页版,利来国际w66网页版,利来国际w66网页版,利来国际w66网页版,利来国际w66网页版
bsp | 2019-01-22 | 阅读(421) | 评论(103)
中国共产党是无产阶级的先锋队,它的性质、宗旨等都决定了共产党的队伍必须具有纯洁性、先进性。【阅读全文】
利来国际w66网页版,利来国际w66网页版,利来国际w66网页版,利来国际w66网页版,利来国际w66网页版,利来国际w66网页版
tvg | 2019-01-22 | 阅读(128) | 评论(799)
PAGE考点44两点间的距离公式要点阐述要点阐述两点间的距离公式两点坐标P1(x1,y1),P2(x2,y2)距离公式|P1P2|=特例若O(0,0),P(x,y),则|OP|=典型例题典型例题【例】某地东西有一条河,南北有一条路,A村在路西3千米、河北岸4千米处;B村在路东2千米、河北岸eq\r(3)千米处.两村拟在河边建一座水力发电站,要求发电站到两村距离相等,问:发电站建在何处?到两村的距离为多远?【解题技巧】两点间的距离公式可用来解决一些有关距离的问题,根据题目条件直接套用公式即可,要注意公式的变形应用,公式中两点的位置没有先后之分.小试牛刀小试牛刀1.已知M(2,1),N(-1,5),则|MN|等于(  )A.5B.eq\r(37)C.eq\r(13)D.4【答案】A【解析】|MN|=eq\r(2+12+1-52)=5.【思想方法】坐标平面内两点间的距离公式,是解析几何中的最基本最重要的公式之一,利用它可以求平面上任意两个已知点间的距离.反过来,已知两点间的距离也可以根据条件求其中一个点的坐标.2.已知点A(-2,-1),B(a,3),且|AB|=5,则a的值为(  )A.1B.-5C.1或-5D.-1或5【答案】C【解析】由|AB|==5,可知(a+2)2=9.∴a=1或-5.3.一条平行于轴的线段的长是5,它的一个端点是,则它的另一个端点的坐标是(  )A.(–3,1)或(7,1)B.(2,–3)或(2,7)C.(–3,1)或(5,1)D.(2,–3)或(2,5)【答案】A【解析】设B(a,1),则,或7.4.光线从点A(-3,5)射到x轴上,经反射后经过点B(2,10),则光线从A到B的距离是(  )A.5eq\r(2)B.2eq\r(5)C.5eq\r(10)D.10eq\r(5)【答案】C【规律方法】(1)两点间的距离公式与两点的先后顺序无关,利用此公式可以将有关的几何问题转化成代数问题进行研究.(2)当点,在直线上时,=.5.若点在轴上,点在轴上,线段的中点的坐标为(3,4),则的长度为(  )A.10B.5C.8D.6【答案】A6.两直线3ax-y-2=0和(2a-1)x+5ay-1=0分别过定点A,B,则|ABA.eq\f(\r(89),5)B.eq\f(17,5)C.eq\f(13,5)D.eq\f(11,5)【答案】C【解析】直线3ax-y-2=0过定点A(0,-2),直线(2a-1)x+5ay-1=0,过定点Beq\b\lc\(\rc\)(\a\vs4\al\co1(-1,\f(2,5))),由两点间的距离公式,得|AB|=eq\f(13,5).考题速递考题速递1.以A(5,5),B(1,4),C(4,1)为顶点的三角形是(  )A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形【答案】B【解析】∵|AB|=eq\r(17),|AC|=eq\r(17),|BC|=3eq\r(2),∴三角形为等腰三角形.故选B.2.已知点A(1,2),B(7,10),则以为斜边的直角三角形斜边上的中线长为(  )A.5B.7C.9D.10【答案】A【解析】,∴中线长是5.3.在直线上求点,使点到点的距离为,则点坐标是(  )A.(5,5)B.(–1,1)C.(5,5)或(–1,1)D.(5,5)或(1,–1)【答案】C4.已知,,当取最小值时,求实数的值.【解析】由两点间的距离公式得.∴当时,取最小值.数学文化数学文化距离两点间的距离(两点之间线段最短)【阅读全文】
4jk | 2019-01-22 | 阅读(517) | 评论(73)
PAGE第3课时 三角形中的几何计算课后篇巩固探究A组1.在△ABC中,AB=2,BC=5,△ABC的面积为4,则cos∠ABC等于(  )                ±C.-D.±解析由S=AB·BC·sin∠ABC,得4=×2×5sin∠ABC,解得sin∠ABC=,从而cos∠ABC=±.答案B2.某市在“旧城改造”工程中计划在如图所示的一块三角形空地上种植草皮以美化环境.已知这种草皮的价格为a元/m2,则购买这种草皮需要(  )元元解析由已知可求得草皮的面积为S=×20×30sin150°=150(m2),则购买草皮的费用为150a元答案C3.在△ABC中,a,b,c分别为角A,B,C的对边,若2b=a+c,B=30°,△ABC的面积为,则b等于(  )+++3解析由acsin30°=,得ac=6.由余弦定理,得b2=a2+c2-2accos30°=(a+c)2-2ac-3ac=4b2-12-63答案A4.在△ABC中,若AC=3BC,C=π6,S△ABC=3sin2A,则S△ABC=(解析因为AB2=BC2+3BC2-2×BC×3BC×32=BC2,所以A=C=π6,所以S△ABC=3sin2A=答案A5.若△ABC的周长等于20,面积是103,B=60°,则边AC的长是(  )解析在△ABC中,设A,B,C的对边分别为a,b,c,已知B=60°,由题意,得cos60°=a2+c答案C6.已知△ABC的三边分别为a,b,c,且面积S=a2+b2解析在△ABC中,S△ABC=a2而S△ABC=absinC,∴a2+b由余弦定理,得c2=a2+b2-2abcosC,∴cosC=sinC,∴C=45°.答案45°7.已知三角形的面积为,其外接圆面积为π,则这个三角形的三边之积等于     .解析设三角形的外接圆半径为R,则由πR2=π,得R=1.由S=absinC=abc4R=abc答案18.在△ABC中,角A,B,C所对的边分别为a,b,c,求证:ab-b证明由余弦定理的推论得cosB=a2cosA=b2右边=ca=2a2故原式得证.9.如图,在△ABC中,BC=5,AC=4,cos∠CAD=3132,且AD=BD,求△ABC的面积解设CD=x,则AD=BD=5-x.在△CAD中,由余弦定理,得cos∠CAD=42+(5∴CD=1,AD=BD=4.在△CAD中,由正弦定理,得ADsin则sinC=ADCD·1-∴S△ABC=AC·BC·sinC=×4×5×387=154710.导学号04994016若△ABC的三边长分别为a,b,c,面积为S,且S=c2-(a-b)2,a+b=2,求面积S的最大值.解S=c2-(a-b)2=c2-a2-b2+2ab=2ab-(a2+b2-c2).由余弦定理,得a2+b2-c2=2abcosC,∴c2-(a-b)2=2ab(1-cosC),即S=2ab(1-cosC).∵S=absinC,∴sinC=4(1-cosC).又sin2C+cos2C=1,∴17cos2C-32cosC+解得cosC=1517或cosC=1(舍去)∴sinC=817∴S=absinC=417a(2-a)=-417(a-1)2+∵a+b=2,∴0a2,∴当a=1,b=1时,Smax=417B组1.在钝角三角形ABC中,内角A,B,C所对的边分别为a,b,c,已知a=7,c=5,sinC=5314,则△ABC的面积等于(解析在钝角三角形ABC中,∵a=7,c=5,sinC=5314,∴AC,C为锐角,且cosC=1-sin2C=1114.由c2=a2+b2-2abcosC,得b2-11b+24=0,解得b=3或b=8.当b=8时,角B是钝角,cosB=a2+c2-b22ac=49+25-642答案C2.设△ABC的内角A,B,C所对的边分别为a,b,c,且3acosC=4csinA,若△ABC的面积S=10,b=4,则a的值为(  )解析由3acosC=4csinA,得asinA=4c3cosC.又由正弦定理asinA=csinC,得csinC=4c3cosC,∴tanC=,∴答案B3.在△ABC中,ab=60,S△ABC=153,△ABC的外接圆半径为3,则边c的长为    .解析∵S△AB【阅读全文】
5jp | 2019-01-22 | 阅读(352) | 评论(272)
按《实施办法》的规定,今年采取分阶段考核办法(四个阶段),实行红黄旗制度,完成好的授与红旗,差的黄牌警告,在阶段性考核过程中,只要有两次被黄旗警告的,单位的第一第二责任人将就地免职,两年内不得安排实职。【阅读全文】
b5a | 2019-01-22 | 阅读(459) | 评论(274)
研究发现,抑郁症患者脑中5-羟色胺的含量就比常人要少。【阅读全文】
km3 | 2019-01-21 | 阅读(564) | 评论(665)
根据以上存在的问题,深挖了存在问题的原因,并制定了整改措施。【阅读全文】
vrn | 2019-01-21 | 阅读(691) | 评论(201)
复习备考时要明确一个“启示”、关注两个“时期”、归纳三个“特征”、明确四大“阻碍”、了解五项“成就”。【阅读全文】
wc4 | 2019-01-21 | 阅读(84) | 评论(997)
1.概念:编码区非编码区非编码区启动子与RNA聚合酶结合位点终止子原核基因编码区非编码区非编码区启动子与RNA聚合酶结合位点外显子内含子终止子真核基因3、遗传信息、密码子、反密码子区别:遗传信息位于DNA分子的基因上面 密码子位于mRNA上面 反密码子位于tRNA上面考点四基因表达过程【阅读全文】
利来国际w66网页版,利来国际w66网页版,利来国际w66网页版,利来国际w66网页版,利来国际w66网页版,利来国际w66网页版
tab | 2019-01-21 | 阅读(407) | 评论(344)
实施RFID项目的成本降低,从而吸引更多的图书馆采用RFID技术,形成一个良性的循环。【阅读全文】
vmi | 2019-01-20 | 阅读(234) | 评论(133)
2、运用大数据技术提高经济运行信息及时性和准确性。【阅读全文】
3ms | 2019-01-20 | 阅读(255) | 评论(797)
实践证明j木材纤维原料是世界造纸工业的主流原料,只有木材原料的大量使用,’才有造纸工业的高效率和现代化,只有加快木浆造纸发展,才能进一步满足纸张多元化消费需求的增长[61。【阅读全文】
h3b | 2019-01-20 | 阅读(470) | 评论(924)
其二在宗旨观念方面,全心全意为人民服务意识不强,表现为关心群众不够,深入群众不够,心系群众、服务群众的思想意识较弱。【阅读全文】
44w | 2019-01-20 | 阅读(616) | 评论(948)
青岛理工大学工学硕士学位论文2.66x10~,钢板已发生腐蚀,涂层防护性能变差。【阅读全文】
fr2 | 2019-01-19 | 阅读(978) | 评论(977)
一、教学理念的更新是重点。【阅读全文】
fhy | 2019-01-19 | 阅读(508) | 评论(307)
其实这一过程就是“长江后浪推前浪,前浪死在沙滩上”“站在别人的肩膀上更进一步”。【阅读全文】
共5页

友情链接,当前时间:2019-01-22

利来国际最老牌 利来娱乐 利来娱乐w66 利来国际家居集团 利来娱乐老牌
利来国际最老牌手机板 利来国际w66备用 利来w66 利来国际旗舰厅 利来网页
w66利来娱乐 利来国际备用 www.v66利来国际 利来国际官网平台 利来国际娱乐w66
利来国际ag旗舰厅app 利来国际手机版 利来娱乐w66 利来国际www.w66com 利来娱乐国际最给利老牌网站
茶陵县| 弥渡县| 桃园市| 新和县| 阜新市| 盐城市| 乌拉特后旗| 永福县| 揭东县| 依安县| 文山县| 曲周县| 远安县| 柞水县| 冷水江市| 浦东新区| 青浦区| 志丹县| 普陀区| 新巴尔虎右旗| 崇阳县| 甘谷县| 宜君县| 广元市| 清流县| 延庆县| 苍梧县| 临潭县| 景泰县| 特克斯县| 潮安县| 岚皋县| 财经| 长寿区| 高密市| 连平县| 扶沟县| 英山县| 红桥区| 苍山县| 沅江市| http://m.10445719.cn http:// http://m.59712848.cn http://m.83374819.cn http://m.50745368.cn http://m.30285460.cn